Process Mining: a Recent Framework for Extracting a Model from Event Logs

Luís Santos

Resumo


Business Process Management (BPM) is a well-known discipline, with roots in previous theories related with optimizing management and improving businesses results. One can trace BPM back to the beginning of this century, although it was in more recent years when it gained a special focus of attention. Usually, traditional BPM approaches start from top and analyse the organization according some known rules from its structure or from the type of business. Process Mining (PM) is a completely different approach, since it aims to extract knowledge from event logs, which are widely present in many of today’s organizations. PM uses specialized data-mining algorithms, trying to uncover patterns and trends in these logs, and it is an alternative approach where formal process specification is not easily obtainable or is not cost-effective. This paper makes a literature review of major works issued about this theme.

Texto Completo:

PDF (English)

Referências


Aufaure, M. A., & Zimányi, E. (2013). Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures: Springer Berlin Heidelberg.

Breuker, D., Matzner, M., Delfmann, P., & Becker, J. (2016). Comprehensible Predictive Models for Business Processes. MIS Quarterly, 40(4), 1009-1034.

Caldeira, J., & Abreu, F. B. (2016). Software Development Process Mining: Discovery, Conformance Checking and Enhancement. Paper presented at the 2016 10th International Conference on the Quality of Information and Communications Technology (QUATIC).

Coutinho, C. P. (2014). Metodologia de Investigação em Ciências Sociais: Teoria e Prática (2ª ed.). Coimbra: Almedina.

Dumas, M., Rosa, M. L., Mendling, J., & Reijers, H. (2013). Fundamentals of Business Process Management: Springer-Verlag Berlin Heidelberg.

Dustdar, S., Hoffmann, T., & van der Aalst, W. (2005). Mining of ad-hoc business processes with TeamLog. Data & Knowledge Engineering, 55, 129–158. doi:10.1016/j.datak.2005.02.002

Gartner (n.d.). IT Glossary. Retrieved 2017.03.08 from http://www.gartner.com/it-glossary/automated-business-process-discovery-abpd

Heames, J. T., & Breland, J. W. (2010). Management pioneer contributors: 30‐year review. Journal of Management History, 16(4), 427-436. doi:10.1108/17511341011073915

Kohlborn, T., Müller, O., Pöeppelbuß, J., & Röglinger, M. (2014). New frontiers in business process management (BPM). Business Process Management Journal, 20(4). doi:10.1108/BPMJ-02-2014-0015

Munoz-Gama, J. (2014). Conformance checking and diagnosis in process mining. (PhD thesis), Barcelona.

Mitsyuk, A. A., Shugurov, I. S., Kalenkova, A. A., & van der Aalst, W. M. P. (2017). Generating event logs for high-level process models. Simulation Modelling Practice and Theory, 74, 1-16. doi:http://dx.doi.org/ 10.1016/j.simpat.2017.01.003

Okoye, K., Tawil, A. R. H., Naeem, U., & Lamine, E. (2015). Semantic Process Mining Towards Discovery and Enhancement of Learning Model Analysis. Paper presented at the 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems.

Song, M., Günther, C. W., & van der Aalst, W. M. P. (2009). Trace Clustering in Process Mining. In D. Ardagna, M. Mecella, & J. Yang (Eds.), Business Process Management Workshops: BPM 2008 International Workshops, Milano, Italy, September 1-4, 2008. Revised Papers (pp. 109-120). Berlin, Heidelberg: Springer Berlin Heidelberg.

Tiwari, A., Turner, C. J., & Majeed, B. (2008). A review of business process mining: state‐of‐the‐art and future trendsnull. Business Process Management Journal, 14(1), 5-22. doi:10.1108/14637150810849373

Turner, C. J., Tiwari, A., Olaiya, R., & Xu, Y. (2012). Process mining: From theory to practice. Business Process Management Journal, 18(3), 493-512. doi:10.1108/14637151211232669

van der Aalst, W. P. (2006). Process Mining and Monitoring Processes and Services: Workshop Report. In F. Leymann, W. Reisig, S. R. Thatte, & W. v. d. Aalst (Eds.), The Role of Business Processes in Service Oriented Architectures (Vol. 06291-834). Schloss Dagstuhl, Germany: Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.

van der Aalst, W. P. (2011). Process Mining: Discovery, Conformance and Enhancement of Business Processes: Springer Verlag.

van der Aalst, W. M. P. (2014). Process Mining in the Large: A Tutorial. In E. Zimányi (Ed.), Business Intelligence: Third European Summer School, eBISS 2013, Dagstuhl Castle, Germany, July 7-12, 2013, Tutorial Lectures (pp. 33-76). Cham: Springer International Publishing.

van der Aalst, W. P., Adriansyah, A., Medeiros, A. K. A. d., Arcieri, F., Baier, T., Blickle, T., . . . Wynn, M. (2012). Process Mining Manifesto. In F. Daniel, K. Barkaoui, & S. Dustdar (Eds.), Business Process Management Workshops (Vol. 99, pp. 169-194). Campus des Cézeaux, Clermont-Ferrand: Springer Berlin Heidelberg.

van der Aalst, W. P., ter Hofstede, A. M., & Weske, M. (2003). Business Process Management: A Survey. In W. P. van der Aalst & M. Weske (Eds.), Business Process Management (Vol. 2678, pp. 1-12): Springer Berlin Heidelberg.

Vera-Baquero, A., Colomo-Palacios, R., & Molloy, O. (2016). Real-time business activity monitoring and analysis of process performance on big-data domains. Telematics and Informatics, 33, 793-807. doi:10.1016/j.tele.2015.12.005

Weijters, A. J. M. M., & Aalst, W. M. P. v. d. (2001). Process Mining: Discovering Workflow Models from Event-Based Data. Paper presented at the 13th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2001), BNVKI, Maastricht. http://www.processmining.org/blogs/pub2001/process_mining_ discovering_workflow_models_from_event-based_data.




DOI: http://dx.doi.org/10.18803/capsi.v17.174-184

Apontamentos

  • Não há apontamentos.