Sistema de Apoio à Decisão para a programação de horários de trabalho com exposição equilibrada nas fontes de LMERT

Arminda Pata, Ana Moura

Resumo


No planeamento e organização do trabalho, um dos maiores problemas consiste em estabelecer as
afetações mais apropriadas entre os recursos humanos e técnicos, de acordo com as características que os
definem e caraterizam individualmente. Tendo em conta as alterações demográficas dos últimos anos, a
maior força de trabalho terá tendência a envelhecer, por isso torna-se urgente e essencial assegurar a
sustentabilidade da sociedade subsequente. Ajustar a tomada de decisões, da afetação destes recursos
humanos aos seus postos de trabalho prevenindo lesões músculo-esqueléticas relacionadas com o
trabalho, com vista à diminuição de incapacidades permanentes e consequente diminuição do absentismo
laboral, é fundamental. Desta forma, este trabalho propõe um conjunto de abordagens heurísticas para a
resolução deste problema, com base na aplicação de metaheurísticas não populacional, resultando numa
metaheurística híbrida que apresenta a melhor solução de afetação de acordo com vários parâmetros
definidos por um decisor ou gestor de recursos humanos. São também apresentados problemas de teste
com instâncias reais e respetivos resultados, provando-se que na maior parte dos casos se obtêm a solução
ótima para os problemas.


Texto Completo:

PDF

Referências


Abramson, D. (1991). Constructing School Timetables Using Simulated Annealing: Sequential and Parallel Algorithms. Management Science, 37(1), 98–113.

Bevan, S. (2013). Reducing Temporary Work Absence Through Early Intervention: The case of MSDs in the EU. The Work Foundation, 2.

Burke, E., Causmaecker, P., & Berghe, G. (1999). A Hybrid Tabu Search Algorithm for the Nurse Rostering Problem.

Simulated Evolution and Learning, 1585(0044), 187–194.

Cappelli, P., & Novelli, W. (2010). Managing the Older Worker: How to Prepare for the New Organizational order. Boston,Massachusetts: Marvard Business Review Press.

Castillo, D., & Collins, J. (2013). Reflecting on the 5th National Occupational Injury Research Symposium and looking forward. Journal of Safety Research, 44(1), 3–5.

Chan, P., & Weil, G. (2001). Cyclical Staff Scheduling Using Constraint Logic Programming. In Lecture Notes in Computer Science (pp. 159-175).

Christmansson, M. (1994). The HAMA-method: a new method for analysis of upper limb movements and risk for work-related musculoskeletal disorders (pp. 173–175). Proceedings of the 12th Triennial Congress of the International Ergonomics Association/Human Factors Association of Canada.

Corlett, N., Madeley, S., & Manenica, I. (1979). Posture Targetting a technique for recording working postures. Ergonomics, 22, 357–366.

Costa, D. (1994). A tabu search algorithm for computing an operational timetable. European Journal of Operational Research, 76, 98–110.

Erben, W., & Keppler, J. (1996). A genetic Algorithm Solving a Weekly Course-Timetabling Problem. Lecture Notes in Computer Science (Vol. 1408).

Feo, T., & Resende, M. (1989). A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters, 8, 67–71.

Fonseca, G., & Santos, H. (2014). Variable Neighborhood Search based algorithms for high school timetabling.

Computers & Operations Research, 52(October 2015), 203–208.

Geoffrey, D., Woods, V., Li, G., & Buckle, P. (2008). The development of the Quick Exposure Check (QEC) for assessing exposure to risk factors for work-related musculoskeletal disorders. Applied Ergonomics, 39(1)(1), 57–69.

Hertz, A. (1991). Theory and Methodology : Tabu search for large scale timetabling problems. European Journal of Operational Research, 54, 39–47.

Ilmarinen, J. (2012). Promoting active ageing in the workplace. European year for active ageing and solidarity between generations 2012: European Agency for Safety and Health at Work., 1–7.

Karhu, O., Kansi, P., & Kuorinka, I. (1977). Correcting working postures in industry: a practical method for analysis Applied Ergonomics, 8(4), 199–201.

Kee, D., & Karwowski, W. (2001). LUBA: An assessment technique for postural loading on the upper body based on joint motion discomfort and maximum holding time. Applied Ergonomics, 32(4), 357–366.

Kilbom, A. (1994). “Assessment of physical exposure in relation to work-related musculoskeletal disorders – what information can be obtained from systematic observations?” Scand J Work Environ Health 20, Spec No.,30–45.

Matila, M., & Vilkki, P. (1999). OWAS Methods. In W. Karwoswski & W. Marras (Eds). The Occupational Ergonomics Handbook. Boca Ration: CRS Press.

Mcatamney, L., & Corlett, E. (1993). RULA : a survey method for the . irwestigation of world-related upper limb disorders. Applied Ergonomics, 24(2), 91–99.

McAtamney, L., & Hignett, S. (2000). “REBA: Rapid Entire Body Assessment.” Applied Ergonomics, 31, 201–205.

Mladenovic´, N., & Hansen, P. (1997). Variable neighbourhood search. Computers & Operations Research, 24, 1097–1100.

Moore, J., & Garg, A. (1995). The Strain Index: A Proposed Method to Analyze Jobs for Risk of Distal Upper Extremity Disorders. American Idustrial Hygiene Association, 56, 443–458.

Moura, A. (2008). A Multi-Objective Genetic Algorithm for the Vehicle Routing with Time Windows and Loading Problem. In Intelligent Decision Support (pp. 187–201).

Moura, A., Rijo, R., Silva, P., & Crespo, S. (2010). A multi-objective genetic algorithm applied to autonomous underwater vehicles for sewage outfall plume dispersion observations. Applied Soft Computing, 1119–1126.

Moura, A., & Scaraficci, R. (2010). A GRASP strategy for a more constrained school timetabling problem.

International Journal of Operational Research, (7), 152–170.

OCDE. (2010). Sickness, disability and work: Breaking the barriers — a synthesis of findings across OECD countries.

Othman, M., Bhuiyan, N., & Gouw, G. (2012). Integrating workers’ differences into workforce planning. Computers & Industrial Engineering, 63(4), 1096–1106

Pentico, D. (2007). Assignment problems: A golden anniversary survey. European Journal of Operational Research, 176(2), 774–793.

Reason, J., Parker, D., & Lawton, R. (1998). Organizational controls and safety: The varieties of rule-related behaviour.

Journal of Occupational and Organizational Psychology, 71(4), 289–304. Retrieved from 10.1111/j.2044-8325.1998.tb00678.xnhttp://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=1998-03193-001&site=ehost-live&scope=site

Resende, M., & Feo, T. (1996). A GRASP for satisfiability. D. Johnson and M. Trick (Eds.), Cliques, Coloring, and Satisfiability: The Second DIMACS Implementation Challenge, 26 of DIMA(July 1992), 499–520.

Takala, J. (2007). Lighten the Load - Foreword. Magazine of the European Agency for Safety and Health at Work.

Topcuoglu, H., Ucar, A., & Altin, L. (2014). A hyper-heuristic based framework for dynamic optimization problems.

Applied Soft Computing, 19(0), 236–251.

Voelpel, S., & Streb, C. (2010). A Balanced Scorecard for Managing the Aging Workforce. Organizational Dynamics, 39(1), 84–90.

Wren, A. (1996). Scheduling, timetabling and rostering - a special relationship? In In: Practice and Theory of Automated Timetabling (pp. 46–75).




DOI: http://dx.doi.org/10.18803/capsi.v16.105-123

Apontamentos

  • Não há apontamentos.